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Ahstract

Concatenated coding schemes with intetleavers cousist of the combination of two sitaple con-
stituent encoders aud au ifuterleaver. The parallel concatenation known as "turbo code” has been
shown to yield remarkable coding gains close to theoretical lnnits, yet admitting a relatively simple
iterative decoding technique. The recently proposed serial concatenation ol intetleaved codes way
ofler superior performance thau turbo codes. Tu botk coding schewmes, the core of the iterative decod-
ing structure is a soft-input soft-output (S1SO) module. Tu this paper, we describe the SISO module
in a form that continuously vpdates the MAP probabilities of input and output code sybols, and
show how to embed it into iterative decoders for parallel and serially concatenated codes. Results
are focused on codes yiclding very high coding gain for space applications.

1 Introduction

Concatenated coding schicime have been studied by Yorney {1] as a class of codes whose probability
of ertor decreased exponentially at rates less than capacity, while decoding complexity iucreased only
algebratcally.

Initially motivated only by theoretical research luteresis, concatenated cades have since then evolved
as a stendard for those applications where very high coding, gains are needed, such as (deep-)space
applications and many others.

The recent proposal of "turbo codes” {2], with their astonishing performance close to the theoretical
Shannon capacity limits, have once again shown the great potential of coding schemes formed by two
ot more codes working, i a concuttent way. Turbo codes are parallel concatenated convolulional codes
(PCCCY, in which the information bits are first encoded by a recursive systematic convolutional codes,
and then, after passing, through an interleaver, are encoded by a second systemnatic convolutional encoder.
The code sequences are formed by the infoumnation bits, followed by the parity check bits generated by
both encoders.  Using the same ingredients, namely convolutional encoders and interleavers, serially
concatenated convoluticnal codes (SCCC) have been shown to vield perforimance comparable, and in
sotne cases superior, to turboe codes [3].

Both concatenated coding schicines admit suboptimur decoding, procedures based on the iterations of
the maxitnui-a-posterior: (MAY) algorithin applied to each constituent code. The purpose of this paper
is the description of a module (denoted by SISO) that implements the MAP algorithin in its basic form
and the extension of it to the contimuous decoding of PCCC and SCCC, As exatples of applications, we
will show the results obtained by decoding two low-rate codes with very high coding gain, atimed at deep

space applications.

2 Nerative Decoding of Parallel and Se¢rial Concatenated Codes
In this section, we show the block diagrain of parallel and serially concatenated codes, topether with
theit iterative decoders. 1L is not within the scopre of this paper to describe and analyze the decoding,
al gorithns. For them, the reader is addressed to (2, 4] (for PCCCYand [3] (for SCCC). Rather, we aimat
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Vigure 12 Block diagram of a parallel concatenated convolulional code

showing, that both iterative decoding algotithing necd a particular module, named soft-tupul. soft-outpul
(S1S0), which implements operations strictly related to the MAP algorithm, and which will be analyzed
in detail in the next section.

2.1 Parallel Concatena ted Codes

T'he block diagrain of a PCCC (the satue construction also applies to block code.) is showninFig. 1. Ju
the figure, a rate 1/3 PCCC is obtained usiug two tate 1/2 constituent encoders (CCs Y and aninterleaver.
For each input information hit, the codeword scut Lo the cha nnel is formed by the input bit, followed by
the parity check bits &€lierated by the two encoders. InFig. 1, the block diagram of the ite rative decoder
is also Shiown. It is based on two modules denoted by “S] S()”, one for eachiencoder, aninterlcaveranda
deinterleaver performing, the inverse permutation with respect to the interleaver.

The SISO module is a four-port deviee, with two inputs aud two outputs. A detailed description © { s
operations is deferred to the next section. Here, it suflices to say that it accepts as inputs the probability
distribution ¢ of the jnformation arid code symbols labelling the edges of the code trellis, and forms es
outputs @1 update of these distributions bawd upon the code constraints. It can be uoticed, from Fig. “1,
that the updated probabilities of the code symbols ate never used by the decoding algorithin.

2.2 serially ConcatenatedCodes

The block diagram of a SCCC (the same construction also applies to block codes) is shown in Fig. 2. 11
the fig ure, a rate 1/3 SCCC is obtained using as owier cucodera rate 1/9 encoder, and as imner encoder

arale 2/3 encoder. Aniuterleaver perinutes the output codewords of the outet code before passiug them
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Figure 2: Serially concatenated convelutional code

to the inner code. Inltig. 2, the block diapram of the iterative decoder 1s also shown. It 1s based on two
modules denoted by “S1S ()", one for each encoder, an interleaver and a deinterleaver.

The $1S0 module is the 38t ue as described before. Tu this case, thoughy bothup dated probabilities
of input and code syinbols are used in the decoding procedure.

2.3  Soft-output algorithins

The SISO module is based on maximum a posteriori (MAP) algorithms. MAY algorithms hiave been
kuown since the early seventies[5,6,7,8,9]). The algorithins in [6, 7, 8, 9] performn both forward and
backward recursions, andthus require that the whole sequerce had been receivecl before starting the
decoding operations. As aconisequeyce, they canonly be used inblock-inode decoding. The memory
requirer nent arid computational complexity grow linearly with the sequence leng th.

The algorithiuin (5] requires only a forward recursion, so that it can be used in continuous -mode
decoding. However, its 1emory and computational complexity grows exponentially with the decoding
delay. Recently, a MAP syinbol-by-symhal decoding algorithi conjugating the positive aspects of pre-
vious algorithins, 1.e. a fixed delay and lincar memory and complexity growth with decoding delav has
been proposed iu [10].

All previously described algorithing arc truly MAY algorithins. To reduce the computational cou
plexity, various forrn of suboptitnum soft- output algorithins have heen proposed. Two approaches have
been taken. The first approach tries to modify the Viterbi algorithin. Forney considered ”aungmented
outputs” from the Vitert,; algorithi [11]. These augmented -owtpu g include the depth al which all paths
are merged, the difl eren ¢ iy leng ¢h between the best and the next-best paths at the point of merging,
and a given number of the most likely path sequenc es. The samne concept of augmen ted output was later
generalized for various applications (12,13114,15,16]. A difterentapproachito the modification of the
Viterb i algorithin was followed in[17], which consists in generating a reliability value for cachbit of the
hard-output signal: it is called soft-output Viterbs algorvithon (SOVA). Tu the binary case, the deg radation
of SOVA Wit} respect to MAP is sinall [18); however, SOVA is not as eftective in the nou binary case. A
comparison of several sub-optimuin soft- output al gorithms can be found in (19].
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The second approach consists in revisiti ng the orig inal symbol MAT decoding algorithins [, 7], with
the antu of simplifying thetnto a form SUILEhle to nnplerentation [10, 20,21, 22,23, 24, 25].

3  The SISO module

(e

3.1 Theencoder

The decoding algorithin underlying the behavior of SISO works for codes admitiing a trellis represen-
tation. It can be a time-invariant or time varying trellis, and thus the aleorithy y can be used for both
block an d convaolutional codes. It the following, for stiuplicity of the exposition, we will refer to the case
of time-invariand convolutional codes.

In¥ig. 3 weshow a frellis encode g, characteriz ed by the follow ing quantities®

o U= (Ui)iex is the sequences of input symbols, defined over a time index set i (finite or iufinite)
and drawn fron the alphabet:
U {uy,ooun, )

o the sequence of input symbols, we associate the sequence of a priori probability distributions:
Plu) = (Fo(u))eew

where

I’k(u):A PlUy 0 ul

o C: (Crer is the sequences of output, or code, symbols, defined over the same thme index set
K, and drawn from the alphabet:

C: {(‘]',..,C;\’()}

To the sequence of output symbols, we associate the sequence of probability distributions:
1 (C) (£%(e) Juew

3.2 The trellis section

The dynatnics of a thine invariant €0 1 volutional code is completely specified by a single trellis section,
which describes the transitions ("edges”) between the states of the trellis at time instauts k& and & -1 1.
A trellis section is characterized by:

. aset of N states S:{S1, ..., sn}. 'I'tic state of the trellis at time kis Si: s, with s € S.
o asct of N - Ny edges obtained by the Cartesian producL.
E:-8xU- {(il, R & N.N,},
which represent all possible transitions between the trellis states
l]nthcf(’llf‘winp_.Ca}’ital]cttmb U, L', <$ ¥ will denote Tand otnvatiables, andlowercaseletters U, C, S, ethentealizatio s,
Th e 1orman letter P{A] will denote the probability of the event A, whereastheletter F2(a) (italic) will denote a function

of a. The subscript k Will denote a disciete time, defit ed on the tirne index set K. Other subscri pts, like i, willreferto
elements of a finite set. Also, “()” will denoteatimesequence, whercas “ {37 will denoteafinite set of elements.
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Frgure 40 An edge of the trellis section

To cach edge ¢ € & the following functions are associated (sce Pig. 4):

o the starting state s°(e) (the projection of ¢ onto 8):

. the ending state s¥ (e);

« the iuput svinbol u(e) (the projection of ¢ onto I4);

« the output symbol c(e€)

The relationship between these functions depend s onthe [particular encoder. As anexample, inthe
case of systematic encoders ($ £(e), ¢(e)) also identifies the edge since u(e) is uniquely determined by ¢(e).
In the following, we only assume that the paic (+5(c), u(e)) uniquely identifies the ending state s/ (c);
this assutnption is always verified, as it is equivalent to say that, given the initial trellis state, there is

a one-to one correspondence between iuput sequences arid state $eqUepces, a property requit ed for the
code tobeuniquely decodable.

3.3 The SISO algorithm

The Soft-In put Soft-Output (SISO module is a four port deviee that accepts at the input the sequences
of probability distributions:
Ple; Pluil),
and outputs the sequences of probability distributions

]’(C;()) P(uv;0),

based onits inputs and on its knowledge of the trellis section (or Code, ingeneral).

We assume first that the time index set X is finite, ie. K2 {1, . . .. n}. The algorithin by which the
S1S () operatesin evaluating the output distributions will be explained in two steps. First, we consider
the foll owing, algorithin:

« Attimne k| the output probability distributions arc computed as
(e 0y« H. > v AalsT O (ule) I P(e(e): 1B s (e)] (1)
cc(e): ¢

Pe(u; O) = Je Yy Ac s u(e); 1Elc(e); 1) BefsT () (2)

’
eu(e): U
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Figure 5: The Soft-Input Sofi- Qutput (SISO) moduie

o The quantities A (-) and /. (+) are obtained through the forward and backward recursions, respee.

tively, as

Ae(s) = o AW ule) DPlele); 1) k= 1, n (3)

o+
esfi(e): s

B(s) > BBl OV el 1) ke w100 (4)

ea¥(e)z s

with initial values:

Aol(s) {é S % (5)

otherwise

1),“(5) . 1 R S‘u (6)

{ 0 otherwise.

The quantities f., Hy are nounalization constants defi ned as follows:

. - >:,3K(c;()): 1
Oy - Y P(w 0= 1

From expressions (1) and (2), 1t is apparent that the quantities Pyp{u(e); 1) inthe first equationand
Pile(e); 1] in the second do not depend on e, by definition of the summation indices, and thus can be
extracted fromthesumnmations. ‘1'bus, defining the new quantities

T j’k(f; 0)
“Pe; )

, A (v o)
11(11; ()) : ]J“' ]gk(“‘])‘

Pile; O)

where 11, Hy are normalization coustants sucl that

He =0 D R 0): 1
He -+ Y P(w0): 1,

it can be easily verified that they can be obtained through the expressions

Pl O) s Hoile > Ay [$ (@1 u(e)s 1 Bl (@) ¢
cc(e): ¢

Pi(u, O): 1y, H, >; Arals® (@) [e(e) 5 e (s (e)) (8)
(4 (A(C): u

where the ,4's and [#s satisfy the salue recursions previously introduced in (3).



The new probability distributions Pe(u; O), Pe(e: Q) tepresent a smoothed version of the input distri-
butions 7 {e: 1), Pr(u; 1), based ou the code coustraints and obtained using the probability distributions
of all symbols of the sequence but the b-th oues (e 1), Fiefu 7). Inhe literature of "torbo decoding”,
Felu; O), Pi(c; O) would be called eatrinsic informations. ‘They represent the ”added value” of the SISO
module to the "a priont” disttibutions Dy (u; 1), Fie(e; 1). Basing the SISO algorithin on 7%:(; Q) instead
than on 1>’1(~; O) sunplifies the block diagrains, and related software and hardware, of the iterative schemes
for decoding concatenated codes. For this reason, we will consider as SISO algorithu the one expressed
by (7). The SISO module is then represented as in Fig. 3.

Previously proposed algorithins were vot in a forin snitable to work with a general trellis code. Most of
themn assured binary input svibol, some assumed also systematic codes, and noue (not even the original
BCIR alporithm) could cope with trellis having parallel edges. As it can be noticed from all summations
involved in the equations that define the SISO algorithin, we work on trellis edges, rather than on pair of
states, and this makes the algorithin cotnpletely general, and capable of coping with parallel edges and,
also, encoders with rates greater than one, like those encountered in some coucatenated schermnes.

4 The sliding window soft-input soft-output module (SW-5150)

As previous description should have made clear, the SISO algorithin requires that the whole sequence had
been received before starting the simoothing process. Thie reason is due to the backward recursion that
starts [rornthe (supposed known) final trellis state. As a consequence, its practical application is linited
to the case where the duration of the transmission is short (7 1 small), or, for nlong, when the received
sequence can be segiented into independent consecutive blocks, like for block codes or ¢ onvolutional
codes with trellis termination. It cannot be used for continuous decoding of convolutional codes. This
const raint leads to a frame rig idity tmposecl to the systern, and also reduces the overall code rate.

A more flexible decoding, strategy is oflered by modifying the algorithin in such a way that the SISO
module operates on a fixed imemory span, and outputs the smoothed probability distributions after a given
delay 1. We call this new algorithu the sliding window sofi-input soft-output (5W -S1S0) alporithin (and

module).

We propose two versions  of  the SW-SISO, which difter iu the way they overcomne the problens of
initialing the backward recursion without waiting, for the entire sequience. From now on, we assume that
the thine index set A is semi-infinite, i.e. K = {1, -, 00}, and that theinitialstate sg is known.

4.1  Thefirst version of the sliding window S1SO algorithim (SW-§1501)
The SW-S1SO1 algorithim consists of the following, steps:

1. initialize Ao according to (H).

2. Forward recursion at titne k: cotupute the Ax throug h the forward recursion (3).

3. Initialization of the backward recursion (tine & > D):
Bi(s) = Ag(s) Vs (9
4. Backward recursion: it is perfortned accord ing to (4) from time £ - 1 back to time k - ) as

Bioy(s) } o ];’k[gfi(cﬂ]]'k~1[11(6');1]1'k~1[f(f»‘)§]],k ko koD (lo)

e:sS(e): s

9. The probability distributions at time & - 1) arc computgd as

Peon(es o) = 1 010y Avep s (1% plute); 1in. p[s¥(e)) (1)
ec{e): v
Py 1)(11',()) H Hcfl,: > ‘, Ak")-][SS(C)]]'};.I)[C((')} 1][&_ I)[S’(C)] (1'2)

e ule) u



4.2 The second siinplified version of the sliding window S1S0 algorithm (SW-
$1502)

further simplification of the sliding window SIS O alporithin, that significantly reduees the memory

—

requirements, consists of the following steps:

1. imtialize Ap according to (h).

2. Forward recursion at tine &, k > 1): compute the Ap . g through the forward recursion

x’h_ ])(S) z > ) xlk_ - l[ss(l:)]}’k_ 1;{11((‘); ]]}’}(. [;[(‘(C)}]l ‘L‘ > 1. (13)

s
eaffe): s

3. Initialization of the backward recursion (thine & > D).

]}1(3) B VS (M)

4. Backward recursion (timek > D)t is performed according to the previous (i 0).

5. The probability distributions at time & {J arc compiuted accordiug to previous (1 1) and {(12).

4.3 Memory and computational complexity
4.3.17  Alporithimnsw-s 81501

For a convolutional code with parameters (ko, o), and number of stat es NV, so that N, = 2% and
N o 9me o thealgorithm SVV-SISOTrequires to store N x ') values of A's and (N - N ) values of the
ip ut unconstrained probabilities P (u; 1), Pr(c; 1)

Moreover, toupdatethe A'sand /2s for each time instant, it needs to perforn 2N - Ny minltiphcations
and N additions of Ny numbers. To output the se t of probability dist rib utions at eacli tinne instaut, we

need a 1) times long backward recursion. 7 hus the computational cotnplexity requires overall:
¢2(1) -1 1) N . Nymultiplications

« (D4 1y N(N; - 1) additions.

4 32 Algorithim SW- 81502

This stplified version of the sliding window SISO algorithin does not require th e storage of the N x )
values of A's, asthey arc updated with a delay of /) steps, As aconsequence, only N val ues of 4 and
D(N; - No) values of the input unconstrained probabititics £4(w; ), Fi(ci T) need to be stored.

The computational complexity is the same of the previous version of the algorithin. However, since
the initializat ion of the # recursion is less accurate, a larger value of 1) niay be necessary.

5 The additive SISO algorithm (A- S1SO)

The sliding-window SISO algorithins solve the problems of continuously updating the probability distri -
butions, without requiriug trellis terminations. Their comnputational comnplexity, however, is still hi gh
when compared to other suboptinal algorithins like SOVA. ‘This is mainly due to the fact that they are
mulliplicative algorithms. Tn this section, we overcotue this drawback by proposing the additive version
of the s1s() algorithin. The same procedure can obviovsly applied to its two sliding window versions
Sy V-SISOT and SW-S1S02.

To convert the previous SISO algorithiun from multiplicative to additive form, we exploit the monoe
tonicity of the logarithm function, and use for the quantities P(u;2), P(c; ), A, B their natural logarithims,
accord ing to the following definitions:

ayx(e; 1) £ log[Pi(e; 1)

e

ai(u;l lop,[l’k(u;])]




ai(e;0) Sloe Pl O))
i lu () o lop[Filer O]
o
ap(s): 1“}’,[-‘“(-")]
. o
Si(s) 2 loellsi(s)]
With these definitions, the SISO algorithur defined by equatious (7).(8) and (3),(4) becomes the
following:

o Al time k, the output probability distributions are computed as

; [
ap(c;0) = log >: expf{ay. 1[5S(r")] 4 oagfule); 1)+ B lsE ] A4 he (15)
ecle): ¢
ae(u; Q) = log > 1 exp{or [s7 ()] axle(e); 1) - AelsP e ] b (16)
exufe): u

where the quantities o (-) and Fi() are obtained through the forward and backward recursions,

respectively, as
ar(s) = dos 1} Cexplon (s S anfule s ale(e) I ke T e @)
Les (e): s
Bls) = don | D0 exp{Ben BT @) ol L aalete) Y| ks e 10, (18)
o3

esbie)

with initial values:

ap(s) ) s

als) - .

0 - oo otherwise
) 0 s S

3 b‘{ ) .”

B (55) { - oo otherwise

I'he quantities e, by arc normalization constants needed to prevent from an excessive growing, of

the numerical values of a’sand /2 s,

“The problem iu the previous recursions consists in the evaluatio y of the logarithin of a suin of expo-

nentials like”
L

: \ Y . {
@ log 1> exp{ai) (19)
H
To evaluate @ in (19), we can use two approximations, with increasing accuracy (and complexity). The

first approximation is
/

I
a: log ‘> :CX]){(I,'} AN, (20)

where we have defined
A .
apr o maxa;, 1: 1,...5,L
1

This approximation assumes that
ap >> a,, V@i ayy

It is almost optimal for medium high signal-to noise ratios, and leads to performance degradations of the

otder of 0.5-0.7 dB for very low signal-to noise ratio.

21'he notations in this part are modified for simplicity, and do not coiucide with previous ones




Using, (20), the recursions (17) and (18) becote
ar(s) .lfr‘x(u,}‘ {aw. ;[55(0)] doagfu(e) I A wefele); )} ke 1y (21)
Silsy = .l“l‘l(é\?f {Hk_”[sg((?)] g [u(e); 1] nk[c((-);]}} ke 1,0, (22)

and the ='s of (15} and (16):

a(c;0) - [.\‘5(
57

ST e)] 4 afude); I+ P [SI;((’)] - h. (23)
ap(w; O) - (lk_l[bs Ty

) ¢
3! [c(e); 1)+ /,ﬂ[sl"‘((z)] 4 hy (24)

When the accuracy of the previously proposed approximation is not suflicient, we cary evaluate «
in (19) using the following recursive algorithin (already proposed in {21, 26]):

ﬂ“) ! (]
ad - max(a“' 1),(11)‘1 10/, [1 -fexp(- [a(" -7, t-2,..., L
a 0([,)’

To evaluate a, the algorithm requires to perforin (1, - 1) times two kinds of operations: a comparison

between two numbers to find the maximum, and the computation of
log[1-t exp(- f)] A\ >0

The second operation can be nnplemented using, a single-entry look-up table up to the desited accuracy
(in [21] 8 values were shown to be enough to guarantec almost ideal performance).

The additive form of the SISO algorithin can obviously be applied to both versions of the sliding,
window SISO algorithins described in the previous section, with straightforward modifications. Iu the
following section, dealing with exataples of application, we will use the additive form of the second
(sitnpler) sliding-window algorithi, denoted by additive, shiding-window SISO (ASW-SISO).

6 Applications of the ASW-S150 module

We show inthis sect.ic,ll examples of applications of the ASW-SISO module embedded into the iterative
decoding schemes of PCC Cs and SCCCs previously showiiinFig. land 2.

Cousider, as a first example, a parallel convolutional concatenated code (turbo code, o P'C o)y
obtained using as constituent codes two equal rate 1/2 systemat jc, recursive, 16-state convolutional
cucoders with generating atrix

i | 1o Dy D3
A E

The interleaver 18 th is N:16,384. The overall PCCC formns a very powerful code for possible use
in applications requiring, reliable operation at very low Sig nal-to noise 1atio, such asdeep-s pace corminu -
nications systerns.

The performance of the continuous iterative decodinug algorithin applied to the concatenated code;
obtained by simulat jon using the ASW-SISO and the look-up table algorithms, ate showninlig. 6, whiere
we plot the hit error probability as a function of the number of iterations of the decoding algorithm for
various values of the bit signal- to uoise ratio #6/No. 1t can be seen that the decoding algorithin converges
down to au error probability of 107 ¥ for sigtial-to noise tat jos of 0.2 dB with nine iterations. Morcover,
convergence is gnarantecd also at sig nal-to noise ratios as low as 0.05dB, which is as close as 0.55 dBlo
the Shannon capacity hnit.

As a second example, we constructthe serial concatenation of two convolutional codes (SCC C) using
as outer code the rate 1/2, 8 state nou recursive encoder W ith generating matrix

GDY: {14 D% 14 D)
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Figure 7: Convergence of iterative decoding for sevial concatenated codes. [l errar probability versus
number of itervation using the ASW-S1SO algorithm

arid, asinner code, therate 1/2, 8 state recursive encoder with generating matrix

144 D IR
ADY: |1, -
am: [

The resulting SCCC hasrate 174, The interleaver length has been chosen to ensure a decoding, delay
intertus of input i for ination bits equalto 16,384,

The performance of the concatenated code, obtained by simulation as before, arc showninlig i,
where we plot the bit error probability as a function of the number of terations of the decoding algorith
for various values of the bit signal-to noise ratio F5/No. 1t can be seen that the decoding algorithi
converges down to an error probability of 107 ® for signal-to noise ratios of 0.10 dB with 9 iterations,
Mareover, CONVEILE ence is guaranteed also at sigpal-to noise ratios aslowas -().1() dB, whicliis as close as
0.71dBto the capacity limit.

A s a third, and final, example, we compare the performance of & PCCC and SCCC with the same
rate and conplexity. The concatenated code rate is 1/3, the CCs are 4-staterecursive encoders (rates
1/2 4 1/2 for PCCCs, and rates 1/? 1 2/3 for the SCCCs), and the decoding, delays in terms of input
bits is equal to 16,384, Tu Fig. 8, we report the bit error probability versus the signal-to noise ratio for six
and mue decod ing terations. As the cury es show, the PCCC outperforins the SCCC for high values of
the bit error probabilities. Below 107° (for nine iterations), the SCCC behaves significantly better, and
does not present the “floor” behavior typ ical of PCCCs. In particular, at 107 %, SC CC has an advantage
of 0.5 dB3 with nine iterations.
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Figure & Comparison Of twa ate 1/3 PCCC and SCCC. The curves refer 1o six and nine werations of
the decoding algorithn and to an equal tuput decoding delay of 16384 '
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Conclusions

Algorithins that estirnate the maximumea-postetionn (MAP) probabilities of the miformation sequence for

trellis codes have been svinthetically illustrated. Herative decoding schewues for both parallel and serially

concatenated codes need as a key component a module that implemments the MADP algorithin, A very
general module, called SISO, has been deseribed, which works on the edges of the code trellis seetion
and is able to cope with all possible encoders. While the optinmm MAP algorithm is intrinsically block-
oricnted, we have proposed a sliding: window modification of it that allows continuous decoding, of the
reccived streamn. Some examples of application have been worked out, concerning very powerful parallel

and serially concatenated codes especially suitable for deep-space cormunication systemns.
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